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ABSTRACT

The focusing of spherical and cylindricél pulses in a viscous and
heat?conducting medium has been investigated. It is found that this prob-
lem can be studied efficiénfly by dividing the region of interest into
three regions, namely, the converging region, the interaction region, and
the diverging region.

The convergence of cylindrical and spherical pulseé of small ampli-
tude in a viscous and thermally conducting medium is governed by a linear
equation with a viséous and heat-conduction term. The solufion of this
equation shows that the amplitude of the pulse decreases initially because
of viscous diffusion and heat conduction, then increases rapidly due to
the strong convergence near the origin; Any initial discontinuity coﬁ—
"tained in the pulse profile is diffused to a transition zone whose width
becomes the order of the pulse-length és the pulse approaches the interac--
tion region. In the interaction:region, the smallaamplitﬁde pulse is
governed to first order by the inviscid linear wave equation. A Fourier
transform teéhnique is used to solve the equation; the solution thus
obtained shows that the amplitude of the focusing pulse remains small
in the whole interaction region including the axis or center of symmetry.
In the spherical case, the peculiar phenomenon of 1805degreé phase change
of the pulse-form after it is reflected from the center of symmetry is
f&und. |

The éonvergence of cylindripal and spherical pulses éf finite aﬁpli-

tude in a medium of very.small viscosity and heat conductivity is gbverned

vi



by the radial Burgers equation with a small parameter g* miltiplying .
the term with second derivatives. The method qf matched asymptotic expan-
sions is found applicable.to this equation; a composite solution obtained
describes 2 converging.pulse with changing pulse~form, e.g., & sinusoidal
wave distorts to an N-wave, The flow field inside the shogks contained
in the pulse (e.g., the frontAor rear shock of the N-wave) is locally des~
cribed by Ta&lor's shock structure. In the interaction region, no small-
perturbation solution exists for the shocké under the conditions %% = 0(1),
§<< 1, and 8Re > 1 . However, the flow field between the shocks
(e.g., the flow field between the front and rear shocks of an N-wave)
satisfies to first order the inviscid linear wave. equation, which can also
be solved by the same Fourier transform technique. This approximation is
justifiedAonly if the parameters £ , & , Re satiéfy certain relations
which insure that the amount of energ& disgipated aue to the entropy rise
across a shock is negligible in comparison with the total energy of the
pulse, |

The divergence of the reflected pulses is briefly studied. The
treatment of the diverging pulse is similar to that of the converging

pulse except for trivial changes in the analysis,

o vii



INTRODUCTION

The propagation of cylindrically and spherically symmetric waves has
been discussed extensiveiy in the literature. vDiverging symmetrical
waves have received much attention becéuse of their connection with a
whole series of phenomena, e.g., bomb explésions, electrical discharges,
thunder, sonic booms, balloon bursting, etc, Converging symmetrical
waves have been studied in relation to the problems of focusing of -
ultrasound, cavitation, and the intensificationvof.sonic booms.,

’Lamb(l) and Jeffreys and Jeffreys(Q) applied inviscid linear acous-
tic theory to Study the focusing of waves resulting from an idealized
explosion such as the bursting of a spherical balloon;v Thevmathematical
model used.is that a pressure-jump discontinuity is located at a spheri-
cal boundary which separates two regions.of different uniform pressure.
The prssure inside the spherical boundary is slightly higher than the
outer pressure. At an initial time,'the boundary isibroken>and méticn is
allowed to begin; an expansion wave propagates toward the center of the
sphere and a compression wave propagates outward into the quiescent fluid,
The linear inviscid solution to the initiai-value»problem shows that the
expansion wave ( a jump discontinuify ) increases its strength as it con-
verges and becomes inifinite sirength as it arrives at center of'symmgtry.
However, Lamb found that the instantaneous infinite strength ét the center
c&uld be avoided if the initial pressure-jump discontinuity at the
spherical boundary was replaced by a smooth but rapid pressure transition

across thevspherical boundary. In this way the converging expansion wave



possesses an artificial structure which causes pressﬁre to remain finite
at the center as the wave arrives. The physical situation near the centexn
as a converging expansion wave arrives there, is described by Resler(s),
who notes that the absolute pressure behind the wa&efront will reach zero
(vacuum) and the velocity of fluid particles approaches a limiting value
Umax ; both are finite at center.

Lamb's idea of avoiding the infinite strength at center of converg-
1ing spherical expansion wave can be achieved.naturally if viscous effects
are considered. The study bf plane waves in a viscous medium by Léger-

(5) (6)

storm et‘al.(4), Hanin , and Knudson reveals that the viscoug effects

modify the jump discontinuity into a rapid but smooth transition. Dunn

(7)

and Dove have examined the focusing of spherical waves resulting from
an idealized explosion in a viscous mediﬁm using the linear equations
with viscous term. As expected, the linear viscous solution closely
resembles Lamb and Jeffreys' inviscid one, the major differences being
that the step aﬁd delta‘functions in the inviscid solution are replaced
by a modified erroxr function and a Gaussian function; respectively, and
the strength of converéing expansion wave remzins finite at the center
of symmetry.

The convergence of a weak cylindrical compression wave with-a dig-
continuous wavefront, i.e., 2 shoék discontinuity, has been treated by

(8)

Zababakhin and Nechaev in a linear inviscid approximation. They found
that the strength of the compression wave increases #ithout bound and the
pressure on-the front of the reflected wave has logarithmic singular

behavior. TLater these results were confirmed by Zel'dovich(g) using a



different method. The convergence of a weak spherical shock was examined

(10).

in linear inviscid approximation by Chernous'ko He obtained a
similarity solﬁtion to the linear wave equation with spherical symmetry,
which shows that the intensity of the converging wave becomes infinite as
the shock wave reaches the center, and the phenomenon of phase change
after the reflection at center aé indicated by the similarity solution:
.a compression wave reflects as an expansion wave (and conversely), after
which the undistufbed state is re-estabiished, The above investigations
about converging cylindrical_and spherical waves of discontinuous front
in a uniform medium illustrate the fact that the linear inviscid solu-
tions are singular at the aiis or center of symmetry. - A possible wéy to
improve the singular behavior at origin of the linear solution is to use
the ﬁonlinear theoxry, since the strength of the wave becomes large in
the vicinity of the axis or center of symmetry. The motion of a strong
convergipg cylindrical or spherical shock wave in a inviscid perfect

gas with constant épecific heats has been studied by Guderley(11),
Stanyukovich(12), and Sedov(13). The basic equations of fuild dynamics
without the dissipation terms are used. The strong converging shock is
assumed moving into a uniform medium initially.atArest. As_the shock
éonverges, it_becomes very strong; the strong-shock conditions are appli-
cable: the pressure in front of the shock is-neglected in comparison with
the pressure behind the shock and the dénsity behind the strong shock be-

comes constant. The use of strong-shock conditions leads to a boundary

condition for the flow behind the shock,wave'which permits a similarity



solution to thé problem, including a description of the resulting outward-
going shock. This similarity solution shows, the strenéhtening of the
converging shock and singular behavior at the axis or center of sym-
metry. Chisnell(14) treated the séme proble@ with a different approach
and obtgined similar result, The singular behaviér at the axis or center
of symmetry noted in the linearized description still persists in the
nonlinear similar solution; although it changed qualitatively,.

In an actual flow situation, the occurrence of unbounded velocity,
pressure etc., is unrealistic, becéuse the real-gas effects such as
viscosity, thermal conductivity , radiation etec., might significantly
modify the results of {he nondiSsipative gas flow theory. >The numerical
éalculation of a converging cylindrical shock by Payne(15), in which an
artificial diffusion term is induced in'fhe finite-difference equation
as the differential equations are approximated by the difference equations,
shows that the solution remains finite when the shock arrives the axis,
Dtacheﬂko and Limshennik(16) solved numerically the problem of converging
cylindrical shock in a fully ionized plasma taking account the dissipa-
tive effects; the result also shows bounded.behavior at the axis. These
numerical calculétions demonstrate the importance of the dissipative

(17)

effects in-the shock-focusing_problem, Chapman examined analytically
the problem of a weak converging dylindrical'shock in a viscous and heat
conducting medium, Later, Manickam(18) extended Chapman's results to

the weak converging spherical shock. Their results show that for a range

of "d", which is the ratio of the shock strength to the équare root of

a reciprocal Reynolds number, a weak inward-travelling shock wave in a



viscous, heat-conducting fluid remains of small strength in the whole

flow, including the axis and center of symmetry. However, their method

yields the solution in the plane of subcharacteristic codrdinates, which
itself depends on the solution; the mapping of the solution back inté
the physical plane requires the numericél solution of.an 6rdinary non-
linear differential equation.

The aim of the present study is, in the context of small-perturba—
tion theory(19), to investigate the converging cylindricai and spherical
pulses and consequent reflected pulses in a viscous and thermally con-
ducting medium, A pulse is a disturbance that does not affect a given
fluid parcel until some definite instant‘and than lasts onl& for a finite
time interval; the chénge of entropy of fluid parcel will persist but is
3rd-order locally.‘ For example, a'propagating.N-wave is a pulse, It is
well known that the cylindricai and spherical pulses are different from
a plane pulse in one respect; as the cylindrical or sphérical'pulse passes 
through a gi&en point, both coméfessions (}7 - A . > 0) and rarefactions
.( P -p < 0) will always be observed at that point, while in the plane
case an individual compression pulse or‘rarefécfion pulse may exist. Thus
the pulses considered in this study contaih both compressions and rare-
factions., The change of pulse-form as well as the focusing phenomenon
at the axis and center of symmetry of the converging pulse are the
main ¢cc.  rns in this study.

H Ir ipter II, we formulate the mathematical model foxr the converg-
ing pulee by stating the basic equations and accompanying initiél and

boundary conditions. Three fundamental assumptions made in the analysis



are: (1) All gas variables in the region of space under stﬁdy differ
but slightly from the corréSponding values in the undisturbed state;
(2) the characteristicilength of the pulse.(pulse—length) ig small qom;
pared to the initial radius R, , whence the pulse starts to prépagate;
(3) tﬁe viscosity and thermal conductivity are very small. We divide
the flow field of ouf converging<pulse problem into two regions, namely,
the converging region and intefaction region., The converging region is
defined as tﬁe region between ﬁhe initial éosition of the pulse R, and
the boundary of the interaétion region. The interaction region is de-
fined as the region whose radius is the order of the pulse-length and.it
includes the axis or center of symmetry.

In Chapter I1II we exaﬁine the pulse in the converging region. Tﬁe
second-order equation for this region is found to be Burgers' equation
with an additional geometrical term., It is known that Burgers' eqﬁa-

(20)

tion provides a good approximation for the study of finite-amplitude

waves in a viscous medium in the plane case. A general solution of

(21) (22)

Burgers' equation was obtained independently by Hopf and Cole

But the presence of the additional geometricél term in our equation de~

stroys the applicability of the Hopf-Cole transformation. However, the

(23), (24)

method of matched asymptotic expansions is found to be capable

of dealing with the approximate equation, provided the conditions

-% = 0(1), R, & > 1 are fulfilled, Here £ is the ratio of the gas

particle velocity to the undisturbed speed of sound; & is the ratio of

the pulse~length to the initial position of the pulse . R, 3 Re is the.'

Reynolds number based on pulse-length and the undisturbed gas variables,



The case of 1ineér acoustics in viscous medium is also studiéd from the
approximate equation by assuming the coﬁdition ﬁ§-<< 1 &

In Chapter IV, we investigate the focusing phenomenon of the converg-
ing pulse in the interaction region. The existence ofrboth incoming and .
reflected outgoing waves in this region indicates that the'approximéte
equation should have a solution consistiné of wéves of both families,
For a pulse of infinitesimal amplitude, the approximate equation for this
region is a linear wave equation with radial symmetry, which is solved
by the mefhod'of Fourier transforms. ' The asympfotic solution at large
distance away from thé origin and the limiting solution near the:origin
.are obtained and discussed. For the-gése-of weak nonlinear pulse, i.e.,
~§— = 0(1) , Rgé > 1 , shocks develop as the puise converges. Using
an N-wave as our example, we investigafe»the front shock and the flow
field between the front gnd rear shocks. It is found that the portion
of pulsa where the shocks are located always violates the assumption of
small perturbation as r-»0 even though nonlinear and viscous effects
are aécounted for., The portion of pulse excluding the shocks is éhown
to satisfy the linear wave equation to first order. This eqﬁation is
used to study the focusing of an N-wave in the interaction regiﬁn.

Finally, we discuss briefly the diverging pulse in Chapter V. The

treatment of the diverging pulse is identical to that of the converging

pulse treated in Chapter III except for trivial changes in the analysis,



II. FORMULATION

We now formulate our mathematical model of the convergence of a cylin-
drical or spherical pulse. An inward propagating cylindrical or spherical
pulse of pulse-length A~ is ?resumed to be located initially in a cylin-
drical or spherical shell between x = R°+-€?- and r = R --i}-, outside
which the medium is at rest or nearly so., WVe wish to know the motion of
the inward propagating pulse at the subsequent times.,

The basic equations.fof this problem are the équations for one-
dimensional flow, for which all gas variables depend on time t and on
one single geometrical coordinate = ,vwhich détermines the distance-
from the axis or center of symmuetry. Theée are the continuity, momentum,
energy equations, eqﬁation of state, and the perfect-gas law:
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Here u , /D s P 4 T and S are tﬁe gas vari;bles, respectively
the velocity of gas particles, density, pressure, temperature, énd
specific entropy. The parameters occurring in these equations are: the
space parameter J ; which is equal to 1 for cylindrically symmetricv
flows and 2 for spherically symmetric flows; the coéfficients of vis-
cosity /AL and of heat conductivity k bofh of which are assumed
constants;.the gas constant R 5 the ratio of specific hegts J ==£%; H
and the specific heat at constant volume Cy « The suffix zero here
refers to values of the dependent variables at some undisturbed standard

state. The coefficient of bulk viscosity A of the gas is assumed to

be zero. The calculationé can be extended to the case of non—zero‘bulk

viscosity by modifying the factor _%_ in Egs. (2) & (3) to the factor
4 Ms '
+ S—— °
( 3 M )

Nondimensionalization of the Basic Equations

We would like to nondimensionalize the system of equations (1) to
(5) in accordance with our converging-pulse problem, The_dimensionless
variables, which are denoted by primed quantities, are defined by the

following relations:
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o _T-T
T = =
r 8"'50
S = Cy

along with the dimensionless independent variables

v
r = 2.
| . |
tl —_ ao » . R .
Ro (7)

Here R, , ¢A y Do s f% y T, and S, are respectively the initial

position of the central point of the pulse, the undisturbed sound speed,

pressure, density, temperature and specific entropy.

'If relations (6) and (7) are substituted in the basic equations (1)

to (5) and the primes are dropped, the nondimensional equations are

20 oF , /. 0) 24 _ _ .
%__..,Lu__?__.f.(/-;-p),ar = =jC1+p) ()
ou ou el / 2%u U u
(/./‘f)) ('at or ) _}—Ef * ]%&[ng * %’()r -J rZ]
(9)
(1)1 TI( 22 42D gk [zrf ;’-23’]
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(+P)= Cirp) (1+T)

(1)
S Y
(1t PI)=¢c C1+p)
. - (12)
: o |
The nondimensional parameter Re& % 'J/"%-E_o— is %of the Reynolds
number based on R, & &, , and the nondimensional parameter K =-2Ff_

- 4uly
= %‘Z: -}—;r— sy where P, = éfﬁ’i is the Prandtl number. This system of |
equations (8) to (12) is nonlinear and no exact solution is avaiiable.

In such situations, the usual technique is to make simplifying assumptions
which will be appropriate to some physical problem. Upder some assump-

tions the system of equations can be properly reduced to .a relatively

simple forms which may be solved analytically or numerically.

Fundamental Assumptions

In our converging pulse problem we make the following assumpfions
on the 'initial'disturban{:es and the néture of the medium:

(i) The initial disturbances of the'gas.variables (the primed quantities
iﬁ (6)) differ slightly from the corresponding values in the undis- '
turbed state (the quantities with suffix zero in (6)), they are all
of the same order, i.€., W'~p' ~P'~ T ~S'~0(E) . WhereAthe

nondimensional parameter § is defined as

£ = —> <« '}(13)

The disturbances shall constitute a single wave propagating inward,



(id)

(iii)
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The characteristic length of the pulse A  (pulse-length) is small

in comparison to the initial radius of the central point of the

pulse R, . Thus, we have another small nondimensional para-

meter § , which is defined as

<< |

§ = &, | (1)

The viscosity and thermal conductivity are such that the Reynolds

‘number based on pulse-length A, ReA_ s is very much larger

than unity,

Qo fo X |
Re, = --:E}——— >> | | (15)

It is important to note that the second assumption provides a
natural way to study the converging pulse. From.these;assumption&

there can be only one family waves at a time, i.e., either incom-

ing waves or ontgoing waves in the region defined by § «r < 1,

but waves of both families, i.e., incoming waves and reflected
outgoing waves, may exist and interact in the region defiﬁed by
r €§ . The region defined by S«rsg 1 is called converg-
ing region and the region defined by r < ) is called interac-
tion region. Since the size of the converging region is much
greater than the length of the convefging pulse, the propagation
of the converging pulsé in this region is considered a long-time
procéss.‘ While the size of‘the interaction region is comparable
to the pulse-length, the pulse stays in this region only for a

short time. We will study each region separately§ however, the
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solutions of these two regions describe whole flow field for the

converging pulse.

Initial and Boundary Conditions

The initial condition imposed on tﬁe system of equétions (8) to (12)
is that an inward-propagating cyiindrica1~or spherical pulse of given
profile is initially located in a thin shell region between T = 1 + =
and T =1 --g— s, Where r is the nondimensional spacelvariable. The
boundary condition is that there is no mass flux into or out of the origin

r=0 3 the fequired solution should have no motion at the axis or center

of symmeiry for all time,




III. CONVERGING REGION

In this chapter we study the converging pulse. The basic equations
are the system of equations (8) to (12); from which we will derive the
approximate eguation., The main simplification comes from the fact that
only one family of waves at a time needs to be considered in this region.
In order to study the'converging pulse the following coordinates are
introduced:

7 = I

5 t+r , (16)

I
o

where § =-§%—<< 1 is defined by (14).

. (<]

The fundamental assumption of small perturbation of all gas vari-
ables (Eq.(43)) allows us to expand the gas variables in powers of a

small nondimensional parameter € :

UCP,5;€) = EGULE) + € (5D + -

PUL,5,E)= E P (7,5 + ERLE) + -0
PC7.5,8) = & F,f?,S) +EZF2(7'5),+"'
SUL3;) = £ S,(7,5) + ES L3+

T, 3,8)= & Ticp,5) + € T2C7,8) +-+-

(17)

14
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Substitution of relations (16) and (17) into the system of equations (8)

to (12) yields a sequenée'oanpproximate equations; the first-order and

second~-order equations are

JC E
2P U, o
?5 ?3
DYy . 2F, -
5% T r % ©
.?_‘SJ_ = 0
3
PI "Pn = 77
PI - a’f)l = 6/ ’ |
(18)
e’ £
o = 5 )
(s ] E Re 81 )
'a,%. 20 |, °U U, DU L
5 25 + Y3y +'a tlhzg)t 7 *J7 = 0
@u, J_'ap DY ’aflz,' top 1 _?:_‘ﬁ/_
LA A v
£ (252, aS, 725, 4 25 077

“[02"7:2-*‘0,7’:

_ Y-t
, = 1P - T2 !

(19)
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Upon integrating the equations (18) with respect to %5 and using the

- fact that the disturbances vanish at § = -0 , we get the relations

u, = “Pl = -"—;"—
S, = o
77 = ( X”’){ol ‘ (20)

The felations (20) are used to simplify the second~-order equations

Iy rom wnic a singie equa ion or u, 1s inally o alned,
(19), ¢ hich ingl tion f | is finally obtained

J
1

§ = () o (2

N

-

_‘J;U:_él’uvuf_____:_'azal .
"z 5 " %5 T ks vz (@)

|

9

where

—

(22)
Equation (21) governs the motions of the converging pulse in the
converging région, in which the nolinear, viscous and heaf conducting
effects are taken into account. It is important to note that Eq.(21)
is derived from a second-order calculation, as may be seen from (19),
but only the first-order quantity w, appears in the equation. This
situation is often encountered in perturbation calculations, both with
ordipary and partial differential equations. In our problem the non-
linear; viscous, and heat-conducting effects are indeed small quanti-
ties, The "second~order" terms embodying the quantities will, over long
periods of time, cause a first¥order distoption of the motion consider-

ably., Since the propagétion of the pulse in the converging region
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involves long times, i.e., the pulse travels a distance much greater than
'its own pulse-length, the nonlinear, viscous, and heat-conducting effects
must be included in the appfoximaté equation as they make a first-order
contribution, Equation (21) is the.Burgers equation with an additional
geometrical'term '%-:ZL ; it may be called the radiél Burgers equation.

It is knoﬁn that Burgers' equation providés a good approximation for the .
study of.finite-amplitude waves with viscosity in plane geometry. A
general solution of Burgers' equation has been'fbund independently by -
Hopf(21) and Cole(gz). Hoﬁever, the Hopf-Cole transformation is not appli=

cable to the radial Burgers equation (21) due to the presence of geometri-

cal term

ple,

—%L ; no general solution has yet been found, - However, under
cerfain conditions Eg. (21) can be solved analytically, In what follows

we will study analyticzlly two particular simplifications of Ea.(21),
&n

namely, the linear case in which —3—<( 1 4, S8Re =0(1) and the weak
nonlinear case in which -5%1 = 0(1) , and SRe > 1 o The condi-
tion j%: = 0(1) is essential in analyzing the nonlinear effects on the

propagation of pulses over a large distance.

Linear Case
In this case the amplitude of the disturbances characterized by &
is assumed so small in comparison with § that the nonlinear term in

Eq. (21), lg1¢4 2Y% | can be dropped. Equation (21) becomes
. 33

2

i ! <e’u
'DUI .i._gL.:z - : ?
T fes 05 (3)



18

_Equation (23) govex;ns the motions of converging pulse of infinitesi-
mal amplitude in. the converging region, taking the viscous and he.at—con-
vducting effects into account. The initial condition for Eq;(23)-is that
an inward propagating pulse of known profile »is located in a thin shell

s :

between r = 1 + 5 and r = 1 - 2 e This initial condition may be

expressed in 7 y 5 coordinates as

u (s, n)= 'f(gj at 7 =1
(5:1) | | (24)

The initial pulse-form f( §) can be quite arbitrary; with wu; a function
of ; alone only pulses moving inward are a2llowed.

To solve Eq.(23) with initial condition (24), we first introduct the
transformations

¥
ut =u,7z

7" = -7
43/?35

i

> (25)

Upon substitution of the transformations. (25) into Eq.(23) and initial

condition (24), we have

2u” 2
’())Zk - 3593 (26)
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Thus, the transformations have reduced'Eq.(23) to Eq.(26), which is the

well known one-dimensional heat-conduction équation. The solution of

Eq. (26) with condition (27) can be easily found to dbe

ol 1
;_.._..-.e_. 51)

4(7‘}1) »
ue' 5= WJ (Sm) e 0’({——8-—?8*)
| (28)

Rewriting above expression in terms of original variables u, 7 ’

% , we obtain the solution for Eg.(23) with initial condition (24)

(B ~F3)

401-7) ,
I ! 4N |
UICZ/B' )~2;Z~5/z Irci-7) f(ﬁfs—ﬁ’—e) ¢ - JS@*)

- 0o
(29)

To illustrate the above solution more specifically, we select two initial

pulse-forms as examples

2

-3 o _
f(;):—. 5 € at n =1 (30)
y 151 €1 o

| 0 " 1351 > (37)

The function f(3¥) in (30) is chosen because it is smooth for all %
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yénd has a close resemblance to linear acoustic pulses actualiy produced
in the laboratories. The function (%) in (31) represents an N-wave
witﬁ discontinuities at two fronts, 3 =#+1 . The N-wave is chosen
because we wish to know how the viscoéity and heat conductivity will
affect this pulsé-form, eapecially the discontinuities.

The solution of Eq.(23) witﬁ initial condition (30) is obtained by
substituting (30) into (29) and evaluating £he resultant integral; the

result is

1

C
(’ + J-ﬂ:L_) ' (32)

Solution (32) shows that the amplitude of the pulse is prOportlonal to
! |

: —
7%? (1+ —ﬁéﬁéLjﬁaz

the term (14 —2é%;2 ) in the exponential function. The amplitude

is influenced by two contrary factors, the geometrical focusing and viscous

and. the pulse~length is characterized by

-
’13/1
/ . It is interesting to note that the amplitude de-
u q) 32
(I+ )

¢reases initially because of diffusion caused by viscosity and heat con-~

heat-conducting effects represented respectively by and

duction and reaches its minimum value at certain 7m y it increases
rapidly due to strong focusing as 7'~v O . The value %, can be

found by setting the derivative of the amplitude to zero!

o -
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J 1’ i | ] 6 ! R T A
—— < = = U-n -
a1l g% —4'—1‘;'@))% ske 1+t 21

) D = 4 + SRe
- m = 3.+4
’ (33)

For high Reynolds number such that dKe = 33 , we obtain from (33)
7%, > 1 ; thus the géometrical'fbcusing dominates the whole flow field.

For low Reynolds number, SR%-** 0 , the viscous diffusion dominates in

the region 1 X § > —P—— . It is to be noted that the scale of
| 3t | y
2

pulse-length incréases from 1 +to ( 1 4+ ) as 7 - 0 ;

4
SRe
thus for moderate Reynolds numbers, i.e., SRe = 0(1) , the pulse-
length remains the same order of magnitude'aS‘the pulse approaches the
interaction region,

The solution of Egq.(23) with ihitial condition (31) is obtained by

substituting (31)inte (29) and evaluating the resultant integral; the

result is-
§+I

o =bke(; - 2[77
/ 4"7(6 - € ' )

%JSR

Y (n,35) =

; 510y _ g LRtz
BTy
+J§?€§ (/——GT—*I"F]) ) ZZ(/ 7) )]

(34)

where
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t

vl

: z |
P (z) = '(—%f e du is called the normal distribution function with
the special’i?roperties () =1, _?é (0) = 2—5- y P(-@)=0 ..
The important result from above solution is that the initial discontinu;
ities at ’; =1 1 are diffused by viscosity and heat conduction t6 two

—%— ) as the pulse converges (7

transition zone with width of 0(
decreases). For moderate and low Reynolds number, i.e., 8§FKe<% 1 , the
width of the iransition zones becomes 0(1) as 7 - 0 3 the initial

N-wave becomes a very smooth pulse-form as the pulse approaches the inter-

~action region,

Weak' Nonlinear Case

If the initial amplitude of the disturbances characterized by £

is comparable to & , i.e., £ 0(1) , the nonlinear term in

é

Eq.(21) is as important as other terms and must be retained; the complete

equation (21) must be considered. We rewrite Eq.(21) here for convenience

: . 2
: u

-’bU: Ul__ -
7T 5 w3 Res o3

21

_
2

The coefficient 88f' can be absorbed by using the new independent vari-

*
able g defined as

(35)

* .
In terms of the new variable ; ,» Eq.(21) t_,hen becomes
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U J g P e 6)
27 L 7 "oxt T o5*?® - 09

where
T ReEr Ll R ET (37)

From the conditions imposed on the weak nonlinear case, i.e., J%: = 0(1),
* i
§BR, >> 1, we find that the neﬁ parameter €&. << 1 . Typically, for
an acoustic pulse'with amplitude &€ = ‘IO"3 initially located at
: . _ «
R = 10 ft and converging in air at standard condition, the parameter €
is =:(10-2) « The initial condition is that an inward~-propagating cylin-

drical or spherical pulse of given pulse~form occupies a cylindrical or

spherical thin shell between 7 =1+ -28— and 7 = 1 - —2—' . This

¥*
initial condition may be expressed in 7 T coordinates as follows

7, 50)= f3%) at 4=
S | ' (38)
Here I( §*) is a given function which represents the pulse~form.

We should recognize that Eq.(36) with initial condition (38) con-
stitutes a singular-perturbation»problem with 8*~%» 0 . A singular-
pexrturbation problem(zg)’ (23) arises when a second- or higher-order
differential equation bécomes a first- §r lower-order one in the limit of
a2 small parameter characterizing the problem approaching zero, i.e., in
the 1imit € —= O . The solution of the limit equation of lower order,

which is called outer solution, will not in general satisfy all the con-

ditions imposed on the ofiginal equation. The regions where the outer
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solution is not valid are called ﬁboundary layers" . The‘approximaté
equations for the boundary layers, which are called boundary-layer equa-
tions, are derived from the original equétion by making the proper scal-
ings of the dependent or independent variables. 1In the:following sections
ﬁe will treat our singular-perturbation problem, Eq.(3%6) and condition
(38), by the method of matched asymptotic expaﬁsions(zz)’ (23).
(i) Outer Solution

" Since 2"‘L is a small parameter, we expand fhebdependent variable

* * . L3 * ) I3 *
u'(q, ¥; ¢ ) in an agymptotic series in powers of &

@, ¢y, 3%; e’)= v, €9, 3%) +s*‘¢f,(7,;e)+.., (39)

Substitution of the expansion (39) into Eq.(36) generates a sequence

of approximate equations. The first equation of the seQUence is

P P 9 Y%
_V ovf' o'f"'i— 70,'_0

MECT AL

(40)

Eq. (40) is called the outer equation (or limit equation) and its solu-
tion is the first term of the asymptotic series (39). Introducing the

following transformation
3/2 - - ‘yz . .
— d .

into Eq.(40),. we find that Eq. (40) becomes
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¥ *
U .U,«- U - O

'a,] @gir (42)

The general solution of Eq.(42) is

AR M A (43)

here 3 (zf*) is a function to be deterﬁined from imposed Qonditioné.
We consider the N-wave as an example; however, the method used here is
applicéble to a general pulse-form and most of the results can easily be
generalized to an arbitrary pulse. If the initial pulse is an N-wéve,

the initial condition (38) becomes

X S
o 15755 |
£y at = v
o 131 > eq

' *
Using the asymptotic series expansion for u'( 7 s ; ) and the trans-

formation (41), we obtain the initial condition for Eq. (42)

J=17:
&Lz )
53 15"] € g5
v2.3%) = (45)
» ' s
o l_lE’l > eq
j=2:
f(o’ ¥ = .
U %) . (45)
< 5 .
o 13 ’>arv
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(Note: j = 1 is the cylindrical case and J = 2 1is the spherical case.)
. . . _
Now the function 3( V') in Eq.(43) can be determined from the condition

(45) or (46); the results are

J=1:
gLut) = 20”4 5—6[\;71'* | (47)
J=2
by r
vy = 57 ¥
(48)
Thus, the general solution (43) becomes |
J=1:
. g“
L4 ¥ ¢ .
U, 3% = 5 (49)
(2+ ;ﬁ—rz*) .
§=2
z* .
viint 5" = (50)

(F-7%)

Expressing (49) and (50) in terms of original variables VU, , 7 e
3*. , We have the solution of outer equation (40)

J=1:

k

Y, (7, 3%) = :
[ M2+ 2-207) (51)
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J: 2
g*
& -hy)

Vo (1.57)= (52)
The solutions (51) and (52) both show that the velocity perturbation
' *
Y, is linearly proportional to % + hence, remains as N-sghape, but
the slope of.the linear profile © depends on 7 . As the pulse con-

verges, i.e., /] decreases, the slope of the linear profile increases.

See Fig. 1.
U.OM

Fig. 1 Sketch of the solutions (51) and (52)

The maximum amplitude _LGm and pulse-length of N-wave '§nf (locations
of the shocks) can not be determined by the solution (51) or (52) alone.
The determination of these quantities requires an additional condition
which is a weak version of.the Rankine-RBugoniot relations for a2 weak shock

wave. A simple method used by Seebass(QS) to find such a condition is to



28

integrate Eq.(40) with respect to %

U, J U . U 2 _ '
J( CET T Rap)t =0

Further arrangement yields -

o0 y ‘ 2 o
A 2 2 d;*-[-’-l&] =0
A 7% 'arz ('Z o) z
-0
-4
By the definition of a pulse, the disturbances vanish at ‘5‘* = too ,

i,e., U‘;( '2 , Too ) = 0, a.nd the above equatiori becomes

&0 .

° % g dx¥ = O
&2 (A =
-0 »

or equivalently
2 * ‘
f " v, ds = C (53)
- '
where C 1is a constant.

For an initial N-wave at 7 = 1 as given by (44), Eq. {(53) becomes

% * by
U Yo 3m = %0 (54)

We now have enough equations to determine the quantities U, and

*
3 .+ Solving Eq. (51) and Eq.(54) with j = 1 , we have
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5,: V=I;J§§,:; 2.+ 2. —2/7

£er

Fs—— | (55)

Ur,y = 2
T Jar &

Similiarly, from Eq.(52) and Eq.(54) with j = 2, we have

J=2: -
—y] S 2
3m=1%n | Ip "'Z
&
Yom = B .
R (56)

' *
These values 3, in (55) and (56) impose a restriction on the solution

of outer equation (40), i.e., solutions (51) & (52) become

J=1:
N
] (2+ 35 -207) 15°1< 15 |
Vol 7.37) = { | (57)
| o | 13*] >13, ]
§=2
3t
7(%’5 ~Inp) 13*1 < 150)
- (58)

U,,c'],;”):

o (3] >15m]
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On substituting of the expressions for U, (7, ¥ *y , (57) and (58)s

> i - 3 . *
into the asymptotic series (39), we find the outer solution u'( n 3

E*) to be
j=1:
§* [ -1’
: 137151 5m )
17 (2+5-207)
u(q,3%; €)= + 0D (59).
. | 571 > 155 ]
jJ=2: o .
3" 1871 < )3m |
5 ) s
u,0n,3%; €)= 1(z5-1 + O(€) (60)
’ (3% > 1 5]
o

(ii) Boundary-Layer Solution
In last section, we derived the outer equation from Eg.(36) and

obtained the outer solution from it. In the process of deriving the

2.
U, * :
outer equation (40), we assumed that Ef—g—;’; is of O(E& ) , conse=-
z

U
2 :z = 0{(1) is assumed. The outer solutions (57) and (58)

quently

N k3
describe an N-wave with discontinuous wavefronts at % ‘ém . In the
2

neighborhood of these wavefronts —%9 and ;_‘2_;_:; wili be large, soO
2
U * D .
that the term g* o oz is no longer O( & ) . The regions where ;':—
: 05" 5

and are large, the boundary-layers, need separate consideration.

(BN
We expect the boundary-layer regions to be narrow regions with large
gradients, so that we may introduce a boundary-layer coordinate by which

a boundary-layer equation is derived for each region. In what follows
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we will treat the bouhdary-layer region in detail for the cylindrical case.
The same analysis can be easily extended to the spheridal_case.
(&) 3§ = 1 (cylindrical case) :

From the solution (55) we know that the boundary layers are located

J—; 2-+~§;~2[? . To investigete fhe boundary layer at

g J}Z Jﬁl+~3l -2[” we introduce the following boundary-layer
coordinates:
- _ +j mfz’“zrr -2/
Wretr)

(61)

Here Y (& ) characterizes the width of the boundary layer. Transform-
ing the approximate equation of converging region, Eq.(36), into the

boundary-layer coordinates, we have

22U _ /;(L:’ ) ’0(;’; J W u, U, - e 2 Cll‘
o1 zy(g)ﬁ/ZJr__z/—,i % 2. e g ) 232
| (62)

' - *
Next we expand the dependent variable ul( 7 s 33 € ) in an asymptotic

series in powers of &

wen, 5 et = Va0, 50+ € acq, £) (63)

Substitution of the expansion (63) into Eq.(62) yields a sequence of

approximate equations among which the first one is

o 28 [ ok _ 2%
D 2[’,}'[2"5%_2';;]* 2% 23 (64)
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¥*

provided Y ( 8*) = & .

Equation (64) is called the boundary-layer equation and governs the |

%
flow field in the boundary-layer region about - = = [ 3 S .
TY=REy & 5 J&rJz*'an‘Z[i
The solution of this equation must match the outer solution (57) at one
side and match the undisturbed state at other sidej; thus the solution

must satisfy the following conditions:

2 - o
Ug ) ’ag ~ O as 3 "’."
(65)
_f.f_ -
'U'B ~ er E g0

f'[—42+§,;—2f7' s

Integrating FEq.(64) twice and using the conditions (65). to determine the
constants of integration, we obtain the solution of'boundary-layer

equation (64)

”B? »[14.10,7/7( il {7)}

L L -
l@(’[;é)”‘z{’,[‘,\[z+_ésﬁ_2(§' Az 2oos
| (66)

Upon substituting the above expression for l%( 7 ,§ ) in the asymptotic

series (63), we have the boundary-layer-solution at §* = ‘-Ji:sr:/,z'-,«- %—2[/7

£ —E‘s; tanh ?[-}; ' '015’)
“'(7'5’”"45@75[” ,, (454“%“?’7>+ |

(67)
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The boundary-layer solution at other discontinﬁity of the N-wave,

*
S = + ’g% J-‘Z 1-2%;-2ﬁ? s Can be found in a similar manner. The .

boundary-layer coordinates are defined as

¢ _ 3% [lar&oh
e |

1 2‘7 S o (68)

' : A ¥*
The dependent variable ul( 7 y 33 & ) is expanded in an asymptotic
*

series in powers of &
) Py
e, $5e) = Ve, 80+ €T U, 50+ 000 (69)

Transforming the approximate equation of\converging region, Eq.(35), in
terms of the boundary-layer variables (68) and substituting the asymp-
totic series (64) into the resultant equation, we have a sequence of
 approximate equations; the first equation among them is

&
Vs jgp Vs U

U‘ _— e——
#of  adqdae G P50 28F (g

The boundary conditions for this egquation are

UB/ 92 ~ O as 5"""”
| (71)
3 _ aA
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The solution of Eq,(70) satisfying the boundary conditions (71) is

X ¢
Jer

Ua — .|+ Tanh
® 7 ;) 2[—421‘———‘-}.1'— [ 41[—JZ+——'-21—)] (7?)

-and consequently the boundary-layer solution at E* = I_;&;J2+ 5 _2[‘7'
&

by (69) is

l’j_ A[S— |
Vo — er I“Ta”b e ¢
w0 i | Cm:;-;,‘:r;‘) + 0
(73)

(b) j = 2 (spherical case ) :
The previous treatment of the cylindrical case can be easily extend-

ed to the spherical case. The boundary layers of the spherical N-wave

* .
are at = + (& ’.,5_. . . Following the same procedure as
; iy 3P /,,7 » wing the ep edur
, : *
before we find that the boundary-layer solution at = - /_8._ }_5_ b .
ore ry y ion 3 e | 5 n7 |

is

— [g fan/’( —L Q(E)
u n,%;¢)=- J T [ I NES & *,,' ] *
(14)
e § - rdlEThy
Vf~ere = £f | . (75)

and the boundary-layer solution at ‘g* = /.5,.. -?,ér’_ - /,.,7 . s
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- D
U:"Z'§}5’)= : /:; -[[-fan/n 5/8f’ ] + Oce*)
274;5; ~ln 4q }gﬁ oy ) )

% ’ ) ’ S
I 2. _J _
where g = 5 3;# er "7

(77)

(iii) Uniformly Valid Composite Solution

We have obtained the outer solution and boundary-layer solutions of
Eq. (36); each‘of'them is valid in its own domain and nowhere else.
However, a uniformly valid composite so1uti6n (first term of a composite
expansion) can be constructed from the outer and boundary-layer solutions.
The form of the composite solution is not unique, since it-depends on the
manner of its constructidn. In this problem we prefer to use the method |
of multiplicative»compo;ition(ZB) because thé resultant composite solution
has simpler form; This method states that the outer expansion is to be
multiplied by a correcfionvfactor cénsisting of the ratio of the boundary-
1ay¢r expansion to its outer expénsion, or the boundary-layer expansion is
treated similarly. This gives -

£ (m) | f(n) ‘ f(n) f(g)

(m)

fc(,n) W = fy {f:n](:) B [fg](rf)) _ [f:”(z)
(78)

Here fc is the comp051te expan51on, fo_ is the outer expansion; fb

f(msn) -

is the boundary-layer expansion; m , n are the number of terms in

the expansion series. In our problem we have the outer solution and



36

boundary-layer solution, i.e., only first term of the expansion, there-~
fore m=mn=1 . Thus, the formula (78) simply becomes
( outer solution )( boundary-layer solution )

Y =

*
( outer solution in boundary-layer variables and & —= 0 )

(79)

We construct the composite solution for each boundary-layer location
according to the formula (79) and the combination of two composite solu-
tions gives the composite solution for whole N-wave as follows:

J=1¢:

[h r[F ]2 )
z/"(z+——~z/”) 4 g® [_,/"Jz+_8,_2r

-fanh( d "/;42+5P 2/_ ] + O(e*)
48* J'],}z-fi.z |

Ure (7'5‘;/ ") =

(80)

' ¥ ¥y | 3" ”‘ ¥ -+J =l
Upet .37, &) = 27<%_,"7)['fo /7( T 7 Zr’lJ—sr;n )

_fan/, 3 */arJan =l )] + Ore?)

4t g 1= Ly

(81)

It can be verified that each composite solution (80) or (81) reduces to

the outer solution, or boundary-layer solutions, depending on the
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appropriate scaling of the independent variables.

Thus, for the weak nonlinear case iﬁ which the governing equation (}6)
is a radial Burgers equation with>a small parameter & * y We ha&e shown
that a composite solution, i.e., the first term of composite exﬁansion,
can be obtained, These composite solutions descriﬁe a coﬁvergiﬁg N;wave
in a first-order approximation. The structure of the front and rear
shocks of the N-wave is clearly illustrated By the composite solutions.
These solutions (80) and (81) are sketched in Fig., 2 and Fig. 3

respectively.

Ue
I
. 0™
l' : - #
5 5
£r

H\/ Z'f g-‘s:;—zfti C ] [g ‘ -éé?-rz-z[;z— be—

.——'fh’

Fig. 2 Profile of the converging N-wave in the cylindrical case
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Fig., 3 Profile of the converging N-wave in the spherical case
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IV. INTERACTION REGION

.The motion of the converging pulse in the converging region f > 8§
has been studied in Chapter III. In this chapter we investigate the con-
verging pulse as it eﬁtgrs in the interaction region r =< § . In the
derivation of the approximate equation for the converging region, Eq.(21);
we have used the condition r >> § ; furthermore, Eq.(21) contains only
a first—order’wave operator which is not capable of handling waves moving
in both directions. Consequently Eq.(21) does not apply to the iﬂterac-
tion region defined by » £ § , which contaips_the-axis or.éenter of
symmetry. Since the size of the interaction region is of the same order
as the pulse-length of the converging pulse, it is concei&able that the
motion of the converging pplse in the interaction regioﬁ is a short-time
process in comparison with thatvin the converging region. We expect that
the relative importance of each factor (i.e., geometri¢al, ndnlinear, and
viscoué and heat-conducting effects) in the interaction region will be
different from that in the converging region.

The basic equations are still the nondimensional equations (8) to
(12). We scale the independent variables, space and time, according to
the dimension of the interaction region 8 as follows:

o .
X = T ="%

Here r , t are the primed quantities defined by (7).

39
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Changing the independent variables ( r, t ) in Eqs.(8) to (12) into the
variables ( x, T ) as defined by (82), we have the basic equations in

terms of the variables ( x, T )

20 ? QW0 o
BTt BTt 3T = =) 3 (83)
U U ! zﬂ 1 [2u  Sou_.u
P oz t4%x = "7 ox +R3A[ 2x? D sz]
S | (e4)
. 2 .

G +pYU+TI( 22 - K oz J o7

P | ('b'c+_ ) Re,\['ox?.ihx Yy

X(K—U u Du

: S . (85)
(t+P) = ¢ CI+p (8%
(}1-/9) = (_I+(°)(I+'T) A (87)

where Re/\ is the Reynolds number based on pulse-length A ; the
third fundamental assumption (18) states that Re, >> 1 .
The boundary conditions imposed on the system of equationé (83) to (87)
are that the solution should have no motion at the axis or center of
aymmetry and should match the solution of the converging région as
X =0 5o - -1, |

We will study the interaction region in the linear and weakvnon-
linear cases geparately because they are based on différent assumptions
concerning the order of the parameters § , & and qu , which cer-

tainly will affect the final form of the approximate equation for the
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~ interaction region. The linear case is to be studied first.

Linear Case
In Chapter III, we have obtained the solutions of the'converging
region in the linear case (Egs.32 and 34). These solutions show that as

the converging pulse approaches tﬁe interaction region, the amplitude of
P .
5@@

that the gradients are less or equal to 0(1) as n—-& . Hence, we

the pulse becomes O ) and pulse-form becomes smooth in the sense

‘may assume that

N
N
®N
-
S
o

o
~
d
b
o
R
N

(88)

are valid everywhere on the converging pulse in the interaction region.

Since 25/ << 1 in the linear case, we may expand the dependent vari-
. fy _

ables in power series of &
UEX, T €)= EU(X,T) + EULELT) 4 «+
pPlx,T;€)= E€EP(x,T) + € Pcx,z)+--

PUx,T;8)= &PIX,T) + €LalXT)+ -

I

. T(X,T€) ETi (x,7) + € T, z)+ -+ -

Stxt;e)= € S,cx,t) + €S, cxz0 4 --

(89)
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Upon substituting these series expansions (89) into the basic equations
(83) to (87) and making use of the relation (88), one obtains a seguence
of approximate equations of which the first-order equations are

200 . DU . . Uy .
5Tt o tJ =z =0

U

0 4 2P _
2t T 7 2z = °
25 _ o
°T
P - F: = T
Pi- ¥ = S
. (90)
which, after some manipulation, yield a single equation for u,
oy, _ 2w /a0 U |
o7t T wxr | Y Ex xS (91)
and S, = o
P = 3("
’DUI‘.'_ ’DEI — O

27 | X (92),

The flow field in the interaction region in the linear case satisfies
to first order the linear wave equation with radial symmetry (91). The
inner and outer boundary conditions for the solution of Eq.(91) are that
{gé solution should vanish at the axis or centgf-of symmetry for all time

and should match the solution of the converging region as. X —» @ , i%——~-1'

-

The explicit form of the inner boundary condition is simply



43

U tx,x) = O at x =0 forallT )
and the explicit form of the outer boundary condition is derived from:the
solution of the converging region Eq.(32) and Eq.(34), depending on the

initial pulse-form used. Expressing the solutions (32) and (34) in terms

of the variables of the interaction region x, T

’2 = Yy = x8
t+r _'

and expanding the resultant expressions for small & while T , x

and SKe are fixed, we have the outer boundary condition for Eq.(9_1)

(Q‘-f.x )z

1+ <

, ’,z_+x . é‘Re
u, (ZI’C ) s ,)./Z )./2 —l—/.— 3/2
’é’ — @ 6 "z ) (’+ SRe) ,
= o (95)
' 2
or -SFe(l%il) _ spe ('z+x—l)
_ | L e _
U (x, ¢) ~ —— ﬁ;{. - C )
% 0 X/Zx"/z ,S/?e . : '
- > =~} » :
I?e(’c+x+l) 5Re (T4 X-1)
-I-{Jf?e(ux)[f 5 ) (C—g———)]

. | | - (96)

The mathematical problem for the interaction region is to find the solution
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of Eq.(91) with boﬁnda;'y conditions (93) and (95) ‘(or 96). It is neces-
sary to solve the cylindrical and spherical cases éeparately.
() 3= 1( cylindrical case )

The method of Fourier transforms is used to .solve Eq. (91) and bound-
ary conditions (93) and (95) (or 96) in which j = 1 . Taking Fourier
transform with respect to T of Eq.(91) and b@undary conditions (93)

and (95), we have

A
o U, 1 oU, T NS
2y Loty (s-)U =0
’bxz+ x °x ’< ! (o7
where o
| -(sST
-0

and the boundary conditions become.

A o A7 4
U,(X.S) = = 8 . Se
2
CES ‘ (99)

'y

u,tx.8) = © at x=0 (100)
The general solution of Eq.(97) is

’ (2
0¢x,8)= G(s) H,l exsy + G,es0 H, Ytxs) (101)

where H§1)(xs) and H$2)(xs) are the Hankel functions of the first

and second kinds with the following special properties:
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) ' 2 . 21 '
_H:i,g)z J 2 +iYz)y — -—.+L('—7rz v 1O |
() Z 2 ) (102)
H, (2= Jy2 —-L‘f{i’) — 5 — ~ Tz as (2] =0
and .
w ' (2 4T)
H, (2) /\/Jr'f?i e [1+0(,2,)] —n‘<a(72<21j
as 121 —> @
_i(z-2m) | (103)
H lf) v -—2; e [ +O(,2,)I ~2r< argZz <

as 1Z] — o

The functions C,(s) and Cz(s) in the general solution (101) are to be
determined from the boundary conditions (99) and (100) in which the pro-
perties of Hankel functions (102) and (103) are used. From the boundary N

condition (100) and the relations (102) we have
(s) = (3 '
Gisr= ¢ )' (104)
From the outer boundary condition (99) and the relations (103) we find

, . / “H(1+ 25 |
N SRe _
C,(s) = = z—-——ﬁ € /_3 A | —fi<args <amw

(105}
Application of the inverse Fourier transform to thé general solution
(101) in whiph C,(s) and C,(s) are given by (104) and (105) yields

the required solution

' ~ ST ,
Utx,t) = ;—F utx,s’e ds (‘105)
—-w ..
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An attempt to evaluate the complete inverse Fourier integral is without
success; however the asymptotic behaviqr for large x oand limiting
behavior for small x are obtained and discussed. |
Asymptotic Behavior for Large x @

The Hankel functions in Gl(x,s) of (106) are replaced by.their
asymptotic forms (103); then, evalulating the resultant integral (106),

we have the'asymptotic solution for large x

_ (’C'f?‘:)z : __&'-x!l
lrg@, . N : ]+§a-
[ | T+x _ __{_l___ c-x -
U x,t) ™~ 75 @\, s = 71+ X V%
X 5@ (I'f' Sﬁe) ’ ( 5”8)

(107)

It-is easily seen that the'seéond term in (107) is exponentially small
as :x — @ —EL—P -14.and the asymptotic éolution (107) matches the
outer boﬁndary condition (95). On the other hand as X—>oo . — +1,
the first term in-(107) is exponentially small,‘and the asymptotic solu-
tion (107) predicts the reflected outgoing pulse. |
Limiting Solution for Small x B

Using the relations (102) for the Hankel functions in G'(x,s) in

(106), we have the solution for small x ,

o .
(ST
yo Ty = 2= | qusd>2gcxs) e ds
x —» O oo . X - 0
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_.__Z‘_E_;__

FIRE) (1+ 55.)% - {2(1+3-)) /z(f{ +O(r(”s)e))

, 7 (108)
where Dﬁé(z) is the parabelic cylinder function of order ',é .

Ui

t/
X ATtV
vz 7z 7 sk,

q

Fig. 4 Velocity perturbation near and at the axis (Eg.(108))

Knowing the velocity perturbation, we can easily calculate the pres-

sure and density perturbations from Eq.(92); the results are

o

. 3% ___i___
- _ez__ﬁi- j ex ? = ) dt -
Pz = fs‘(#fi&)’/#_m P'( 2(f+ ske)) /2 ({—{ I+ 5, Pe) T O({—(“i)%)‘

x>0
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x =

B A | 10y

The.limiting solutions show that in firsf-order approximation the
velocity perturbation is linearly proportional to x as x -~ 0 and the
VpressureAand density perturbations are independent of x as x-—- 0 |,
varying ﬁith T only. It should be noted that the preasure and density
ﬁerturbations are Of 7%- ) even at the axis of symmetry; the perturba-
tions remain émall in the interaétion region, hence small in the whole
flow field in the linear case.

If we apply the same analysis to the Eq.(91) with other outer bound-
ary condition (96), we can also obitain the asymptotic solution for large x

ey ~n = [C-;—cfnx) - Gt x>] + 0( 3,,)
X — 0O

and limiting solutions for small x (111)

3
G+ O(%).

o X

X0 (112)

T
N d G’(d)dd + O(

o = £) (113)
=) = o az) Tr-x ]
X —»0 -0
P x,T) = Jﬁ)f"::) . (114)
X — O -

Here the function G{(z) has the form
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| o .
G<z>={z[§(ﬁ%ﬂ—)—@(i‘gﬁe;' )]

Z+/ )2 Z-] (2

o SR(= - sRe(—5—)
e 77 - e )}

+

=

(115)

(b) 3J = 2 ( spherical case ) :
The mathematical problem we intend to solve is Eq. (91) with the
boundary conditions (93) and (95) (or 96), in which j = 2 . Applying

the Fourier transform to Eq.(91) and boundary conditions (93) and (95),

ve find
0, 2 o0
0} 2. . 2 2 A
st 7 oot (S-g)u =0 (116)
2x X Dx
where _ »
A -ST v
L(,(I,S) = ucx,t) e dr (117) .
- .
and the boundary conditions are
A , _
4, (x> =0 | at  X=0 (118)
. (35X -J_(I+_fk__)32
' 4407 SRe
Ginsy = £ IT s
X & x 2L
%= >~ o ' (119) .

The general solution of Eq.(116) is

)

A : T H ')(.is) + C,(5) I H;, (zs)
h(x,5) = C:“’J{'{s % 2 2xs %

- — (

(120)'
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4D (2) :
where H y (z) and H 5’(2) are the Hankel functions of first and second
2 2 )

kinds of order 3/2; they have the following properties:

) ' = I .
H.?/z(Z) = __ZFi ("3‘""—‘1) as 12— 0
: . (121)
o - [z2 2 _ L —_-
H_;/z (Z) = -T—T-( 3 l 2,) as [21—=0

and w =~ (2-T) N
_ ,“/3/2 (2) ~o /;E-e [I‘+ O(IZI)] as  12) - oo

(122)

(2) -((2-1) _ .
/43,2‘(2) ~ 'fﬂzz e [z+ O(,‘%‘“,)] as 2l ~e

The functions C,(s) and C,(s) in the general solution (120) are
determined by using the boundary conditions (118) and. (119) and the pro-
perties of Hankel functions (121), (122); the results are

C.(5) = Cyts) o (123)
N i 2 ‘
L —)S
FUtsR)S

_ 07 s*e

Gs? = "5

-7 < args <2
(124)
Performing the inverse Fourier transform to (120), we obtain the required

solution as an inverse Fourier integral

w,\. LS’l‘d :
-y = L s
Uitx.T) = MJ Uiz, s¢ (125)
-®

It is diffiéult to evaluate the compiete integral; however, the asympto-~

tic behavior for large x and limiting behavior for small x are
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studied.

Asymptotic Behavoir for Large x
Using the asymptotic forms of the Hankel functions in ﬁ‘(x,s) in

(125) and evaluating the resulting integral, we obtain the asymptotic

solution for large x ‘, . . )2 ,
AT +x -
| | T E -eo)
' ' 3R : AT
ucx,T) ~AJ ! 3 ]/( T+x) € +{(T-x) e
—_—\T2 : ‘
xme o SxUItE)

T O< ,; 7 'y)
S+ 5g) (126)

In the limit 'x —00 :5-——> -1 , the second term is exponentially
small and the solution matches the outer bouhdary condition (119). 1In
the 1imit X =00 —E-—¢~+1 s the first term.is negligiﬁle and the
solution (126) predicts a'reflected-outgoing-pulse.
Limiting_Solution for Small x :

Replacing the Hankel functions in G,(x,s) in (125) by their limit-
ing forms (121) and performing the integration on the resulting integral,

we obtain

3
U, X, T) = - {
X -0 3

z
8

(’+' y js[e P[——‘;k; ] * o(é'(l+———)72)

(127)
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PxT)

Y. SR
[38(/+§‘;-;~ z]

o)

Fig. 5 Pressure perturbation near and at the center (Eq.(129))

The pressure and density perturbations as x — 0 are calculated fronm

(92); they are

rinD = 53 i )] + 0 (SEa3)

Re

(128)
b iez)= f x, T)

x ~+O x—>o0 . : (129)
If we apply the analysis above to the problem posed by RBq.(91) with
the other outer boundary condition (96), we have the following results:
Asymptotic Solution for Large x :
. / A sl x O(-1-yN /.
U, 2, 7) ~ };’F('c+x)+ F(T-x) +O(é‘x‘> (+30)

x
-~ 5




Limiting Solutions for Small x

Upex, Ty = T x dZ

()Y + O x?
X -0 2pP(%) 9 dtzF ¢ S )

' -7 { x*
(x, 7)== —IZ_—— L d rre) + O(=

[3,(1,7:)2 )’F,(X,’T)

x>0 ‘ X—= O

Here the funstion F(z) has the form

| = % (L5t & /3P (2
| F(2) _’z[g(néf_’é_’_‘r;j_’))_ 3( -Wfrzﬁ 4))]

b (T
7 lo7e o
&

.
| 5%

—spe(Ztly -k
c

2-1 27

z )
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(131)
(132)

(133)

- ) (134)

oM

Fig., 6 Pressure perturbation near and at the center (Eq. (133))
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v 18

As in the cylindrical case, the velocity perturbation u
lineafly proportional to» x as x-— 0 and the pressuré and density per-
turbations p, , P, are independept of x as x—=— 0 . The amplitude
of the perturbations remains small, i,e., O(~%—) << O(-%‘), throughout
thé flow field including the center of symmetry. However, the spherical
and éylindrical cases differ in one important respect: thaf the reflected
spherical pulse changes phase by 180-degree but the reflectéd cylindfical
.pulse does not, as indicated by the asymptotic solution in the cylindri-
cal case (107) and the asymptotic solution in the spherical case (126).
With the same incoming pulse, i.e., compressions ( p >0 ) followed
by rarefactions (p < d ) K the reflected spherical pulse has the pro-~
file with the rarefactions followed by the comﬁressibns, but the reflect-
ed cylindrical pulse has the same profile as‘the ihcoming pulse,

(9)

Chernous'ko used different method to solve the converging spherical
compression or expansion wave (a jump discontinity) in a linear acoustic
approximation; the result shows that a compfessién wave reflects as an
expansion wave (and conversely) after which the undisturbed staté is
re-established. |

The occurrence of 180-degree phase shift in spherical focusing but
not in c¢ylindriecal focusing is due to the fact thatvspherical fécusing is
much stronger than cylindrical focusing. In the problem of bursting of a
spherical ballon, an inward-pfopagating expansion wavéfront is followed
iimediately by a compreésion.wave. As the expansion wavefront approaches

the center of symmetry, a portion of the compression wave coalesces with

the expansion wavefront because of the strong focusing and a cusp is
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formed at wavefront. The éloser the wavefront approaches the center, thgl
sharper the cusp becomes., As the wavefront reaches the center, there is
no clear differentiation between the expansion wavefront and the porfion |
of compression wave in the cusp; the flow partiéles at the centér are
affected simultaneously by the expansion and compression. We may say

thaf the expansion wavefront is éaught and repiaced immediately by the
compression wave right after the reflection. Thus, the 180-degree shift
change oceurs in the spherical focusing. On the other hand, the cylindxi-
cal focusing is weaker; the compression wave does not coalesce with the
expansion wavefront and no cusp can be formed. Thus, no phase changé

occurs in this case.

Weak Nonlinear Case

In Chapter III, we have obtained the solutions for the converging
pulse in the weak nonlinear case, i.e., Eq.(80) and Eg.(81). Both solu-
tions describe an N-wave congisting of a front shock; an expansion'zone,

and a rear shock. As the N-wave approaches the interaction region 7-* § ,

the amplitude of the N-wave becomes O(F =) for j = 1 and Of £ )
for j =2 , which is still less than 0(1) since we have assumed

—%~= 0(1) in the weak nonlinear case. The major difference between the
weak nonlinear case and the linear case is that the shock waves develop
in the pulse-form due to the nonlinear effect; hence, two length scales
are contzined in the pulse., In our example of an N-wave, there are two

*
shock waves whose thickness is at least one order in & less_than

the pulse-length of the N-wave, and the size of the expansion zone is com-
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parable to the pulse-length of the N-wave; more precisely, the expansion
zone is the pulse-length less the two shock thicknesseé. vThe interaction.
-region is defined to be the same order as the pulée-length of the ﬁ~wave,
thgs, the propagation of the front and rear shoéks in the interaction
region is a long-time process because the shock mast travel a distance
much greater than iis own thicknéss, and the propagation of the expansion
zone between the front and rear shocks in thé interactioh region may be
considered as a short-time process since its éize is:comparable to the
interaction region. The existence of different scales for different
porinns-of the N-wave enable us to consider each portion separately. We
will first study the front shock of the converging N-wave as it enters

the interaction. The analysis will be in general similar to that of
Chapman's(16) except that the initial shoék structure and.shock trajectory:
are naturally determined from matching to the solution in.converging
region. |

For convenience wé-change the independent variables in Eq.(80) and

)

'Eq.tBI) from ( 7 3*) to ( 7% ) using the relation 5* =<?;;g

Ve obtain

j=1( from Eq.80 )

) : . .fan (__L 5.;.*/ I+?"5"(l )
27 L ( L v2-2l) *oe -"F,//Jrz-g-f(/ r>

- € - 17)
~ tmh (— §# EP/H szﬁ )] + Oce?)
& -S—Ir'_]- /+2*3—‘(/'/7—)

Ulc (71 §/ 8’)

- (135)
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j=2( from Eq.81 )

5 ['fon/: §+['* —Eln_'z
25 (1= Zhy) - EEg- 5”17

-—'f'ﬁnhi("}, 5‘ l - «g/n ] & O(£#), .
€ i'], Ef'/n7

As the N-wave approaches the 1nteract10n region i. €., as 'Z———a- S s the

Ulc('Z: §*) e¥) =

(136)

thickness of the front shock, "U(-Z-j which is represented by thc denominator
of hyperbolic tangent function in Eq.(80) and Eq. (81) and nondimension-

alized by pulse~length A, becomes

o b4 b= #—Eﬂ
j,._ 12 : ar = O(¢ 5[3_) o( SRC) (137)

- H = ¥ = 8
j=2: w = 0(Z 5fh3)= O(-?@{/—"%‘) (138)

and the strength of the front shock A as 7-—-> § is

fore a-o(s) o
j =2 s = O(=F=) |
IEe = OO | (140)

In order to study the flow field inside the front shock of the N~
vave, we introduce a ¢oerdinate system ‘t_;hat meves with shock and magnifies
the shock thickness |

X = b4

T+ +A7Qz) , - (141)
Jd = E g

where f(x) depends on the local shockvstrength and will be detemj.ned
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later. The shock strength A is small at least initially; we expand

the dependent variables in series of powers of
U(X,'C'j‘A)= AU,(X,a)-fAzuz(x‘,g)_f_ « s s
f?(f}<,'t jAA) = 1A.f§ (2:,3‘)-+-‘3' Uztjz.a) + v
P (x.T;4) = AP (X,9) + A B[y + -
T(x,T;a) - AT(XLY) + & TalXy + -+

R .
Slx,T;4)=_AS,(2.4) + & Sex,9)+- -
- (142) .
Substitution of the coordinate system (141) and the series expansions of
dependent variables (142) into the basic equations (83) to (87) yield a
sequence of approximate equations; the firgt znd second approximate

equations in the sequence are

A

0(1,55 :
20 + U
2 °y
U, 1 2B
SCASTR I e
?Y ¥ 04
_?)_él_ = O
°9
P' = 7; +-Pl

(143)
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0(%3,*,&)
o +f<)®u' 2‘; +;‘3‘3 +u,.'%g'_
Plfau, _:_l;l_ + U g‘;' ‘ é ggz_ __}4 2 _;z;; ~
ﬁos' T,',aa? + 2‘; +u,g§'_-,<?o’j7fz -0

Pz" 7—2"‘/02-F,7-» =0

£

' 2
Pz - 82 —3’5”0,-3,02 -2 3(2_') P, = O

2
(144)

The first-order equations (143) are integrated with the application of

the conditions that disturbances vanish as y — - 00 ; we have

P""U':o

u, + -E;_’.v::. o
5,7-.: o

P - T - (O: = O

=S, =0 | (145)
Upon substitution of above relations (145) into the second-order approxi-

mate equations (144), we obtain a single equation for u

U, , U,
)C ) U = [q, ':Z_g"
(146)
where I+ '5‘.,(3)-') F+!

4A = z = 2
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The flow field inside the fromt s.hock is governed by FEq.(146) in
which the nonlinear and viscous effects are included. it is noted that
this equation is similar 1o the boundary-layer equation in the converg-
ing region. Eq.(146) can be integrated twice immediately. The con-
stants of integration are zero because of the conditions that distur-
bances vanish at y = - ® and the half velue of shock strength is

agsumed at y = O . The solution of Eq.(146) thus obtained is

u, tx.j') = .igf) [ 1+ fanh (- 7(::) {7)]

2
(147)

The shock strength is the asymptotic limit of u1(x,y) as y—~—0

’
(x)

(148)

The function f'(x) is determined by matching the present solution
to the.solution in the éonverging region. The strength of the frqnt
shock of the N-wave in converging region ié obtained from the boundary-
layer solution (67) for =1 and (74) for j =2 as ¥ -—wo ,

-1

R ' mt7,w;eﬁ)= :
1+ 22La-f7) (149)
J=2: u,(']oo'ﬁ"): — '
»7) _ E—E/
(RS L (150)

Réwriting the expressions (149) and (150) in terms of the variables of

the interaction region and expanding the resul tant expressions for small

S with LS & x fixed, we have

s
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J=1¢ u,<7,oo;£‘9x r(m——/—— : (151)
= 2 @ a -l '
j UI(?,w }E)x,j 8 'n_s_ x

(152)
Before carrying out the matching, we'éhould notice that the solution
u1(x,y) is the first term of a series expansion in terms of § and the
solution of converging region u1(7 , E3 a*) is the first term of a
series expansion in terms o.f ' E. ,' thus, tﬁe?matchin'g requires
AU X, ) = EUN,E; )
» (153)
Substituting the expressions for u, (x,y), (148), and u1(7, 53 8*),

(151), in (153), we have f'(x) in the cylindrical case

(154)
. | o
Substituting the expressions for u1(x,y), (148), and u1(7 » 535 € ), (152),

in (153), we have f'(x) in the spherical case

=2 Floxy = -5 ‘
| 2 x ~ (155)

Substituting the expressions for f'(x) in (147), we have the solution

for the front shock of the N-wave in the interaction region,

[[-4— fan/;(A/__m)]

(156)
utx, j)._'-——-'[l-f' fan/l( 4/31 ]

e o ABDE er

<
[}
n
v

(157)
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Equation (156) and equation (157) both exhibit local Taylor's shock
structure; the shock thickness varies with the radial space coordinate =x
in the following manner:

J=1: ()tfz@') _8[—;—.8)\- (158)

pnE (7% (159)
The shock tﬁickness is useful for esfimating the magnitude of derivatives
"in the basic equations (83) to (87). As indicated in (143) and 144),
21l the terms included in the first- and second-approximate equations
contain only derivétives with respect t§ y (%he derivatives across the
shock wave). Using the solutions (156) and (157) and the felations for
the shock thickness (158) and (159), we can estimate the terms in Eq.(1461
The smallest one is |

3 _
A Re .
O( 2.3/2 (160)

[N
[}
-
v

. ' A E.RE _
yJ=2: O( ) ' -
| x 5/ | (161)
The largest terms omitted from the equations (83) to (87) describing
the flow field within the shock wave are equivalent to derivatives with

respebt to x (derivatives along the wave), and from the solution

obtained these are



J=1: O(f"s/,) ,  (162)

’ Pay
j=2: Ol Xz
_ (163)
72 .
8ﬁn—_é—_ for j = 2 , From

above relations, it is easily seen that the omitted terms can affect the

£
Recall that A=-—rg: for 3 =1 and A =

issue only for

\ . AR . _4a S ERe & O
J = * xs/z x’/z C
2
j=2: 2"€ Re = L .. ;éé“ z'vO(’)
. 8[}:5‘)(,3 2 g ) 4

which contradict our assumption that -g—- = 0(1) , Eke >> 1 .. Another
phenomenon which may affect the current result is the reflected waves from
the origin. However; reflection starts only wﬁen~the shock.wave propa-:
gates to a distance from the origin which is comparable to the width of
the.blﬁrred zone of the shock. . For the cylindricallcése this distance

is x = 0 , and the shock strength at this distance iz 0( ERe )

—=)
. € Re’ .
which is much greater than 1 according to the assumption 8RR >> 1.
For the spherical case the shock thickness is linearly proportional to

Z
x (the position of shock), therefore, it is always a factor -l%gég-
less than the distance x , as obviously seen from (159), regardless how
small the x is; the shock strength always becomes large (as x — 0)

before any reflection starts to occur,

The above arguments lead to the conclusion that under the assumptions
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&*?3;1_ ’ —%- = 0(1) there is no small-pertubation solution for the
shock waves in the vicinity of the axis or céhter of symmetry, even |
though the second-order nonlinear, viscous, and heat-conducting effecté
are taken into account. In the neighborhood of the origin where the
shock strength becomes much greater than -1, the unﬁerturbed basie
equations (1) to (5) must be used. |

Since the initial amplitude of the pulse characterized by €& is
small, say, 10"3 , the size of the region within which the shock strength
becomes very large, i.e., O(‘Eﬁ@ ) is expected to be small. The radius

of this region can be estimated from the solution (156) (or (157)):

* — ! : ‘ .
=1 X, = z
’ (ff?e ) (164)
52 x, = (———)
c 5,’7;':‘;-‘ Re
: : (165)

Within x, the shock.wave becomes very strong and the energy-dissipation
due to the entropy rise across the shock becomes gignificant., It .is iﬁ—
teresting to know the energy dissipation in this region after the shock
passes through. To estimate it we use the similarity solution of Stroﬁg—
shock implosion given by Stanyukovich(jz) (see also reference (11)) who
solved the unperturbed basic equations (1)‘to (5) without the dissipation
termsz; the dissipétive effects are included through the Rankine—Hpgoniot
rélations. At the instant the converging shock reaches the origin, the
limiting relationships between gas variables and space coordinate »r

from the similarity solutions are
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-——,-«
U ~ a % "
a ~ D°r
2(/-x)
2/°< - oL
P ~T ~ D r
{3‘ ~ constant (166)

wvhere v , @, P , T and £ are dimensional gas variables; D
is a dimensional parameter containing only units of length and time and

& ig called similarity exponent (a pure numerical number). For strong

Cr

implosion in a perfect gas with ¢ = o 7/5 s the value of o is

0.834 in the cylindrical case and 0.717 in the spherical case. The total

energy dissipation Ed in a region with radius ro' is

o . o : _
J_ . J _ P i s
Ey -.—-j TASZTrrf) dr = WFTCV /OjF},Z .r c_:’f
o . ° '(1_67)
.SUbstituting the »limiti_ng relationships (166) and the value of &  into

(167) and performing the integration, we obtain

j = 1 : 16
J Ed» ~ 0 /Oj e (168)
Ro
where rnh =R, 8§x,= TE
J=2: 2.1
Ed ~ 1, /09 e (169)
vhere : - /eol
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The energy per unit volume for a small disturbance that is propa~
gated within a gas initially at rest can be found in many texts (e.g.
Zel'dovich and Raizer(26)). It is

& = h°((’-(o°)-+f°a_ (170)

The first;order chanée in the above expression is related to the change
in total volume of the gas that occurred 2s a result of the disturbance.
If the disturbance was created in sﬁch,a manner that the total volume
remained unchanged, then the perturbation of the entire energy of the
entire gas is a quantity of;second-brder in ( pP- Co ) , since the term -
proportional to ( P-—f% ) vanishes in the process of integration over

the volume. Thus, for an N-wave initially occupying a cylindrical or

A

spherical shell between RO + 2 and- Ro -5

Z » the total energy of the

N~-wave is

Cye1: E = 5[Trm‘,+§f-wm-§)’]z 2TRf £ A

| (171)
C o . | 4 24 g 2
j=2: E = 5[—5-77(&*%) - g‘ﬁ‘(k’o-?)];\c 4771?,/00 EZA
- (172)

The ratio of the energy dissibation due to the entropy rise across
the strong shock in the region defined by T, to the total energy of the

N~wave is
ROS l'él _&g
Ed sﬁg) D er’  __fogRe -
.- E | £2R, A F’edm s (173) |




Y

2.2/
j=2: E4 (Re/]:;) 109 %e /iZ ge W log Re
E g Ro A - : SB(/ﬂé)/-’sﬁeZ.zl

(174)
The above results show that the ratio of the amount of energy dissi-
pated in the region where the shock becomes very strong to the total
.energy of the N-wave depends on the parameters & , & , and. ./?e_ .
For exampie, ‘the convergence of an N-wave in air at standard éonditions

with R = 10"t , §=€ =107, gives

. Eq 7-n+m
j=12: E 22.4~.2n +3,2m
0 .
j = 2 —E'i ~ 7—n+m
E

LY 5.5-5.21n+2.21m

(M " 10

Thus, the energy dissipation is negligible in comparison with the total

energy of the N-wave, if the following condition is satisfied:

j=1: . k, = 22.4 - 4.2n + 3.2m >‘1 (173 a)

15.5 = 5.21n + 2.,21m > 1 - (174 a)

Cde
"
N
o
~

i

It is easy to see that the condition for the spherical cﬁse_ is more
restrictive than that for the cylindrical case. Typically, a spark

generated N-wave might have m=1, n = 3 , which gives k1 =13,

k2=2.1 L]

This completes our analysis of the shocks of the K-wave in the inter-

action region. We proceed to examine the flow field between the front and
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rear shocks of the N-wave, i.e., the expansion zone. As 2lready men-
tioned, the width of the expansion'zéne is comparable to the pulsé-iength
of the N-wave. One important difference between the flow field in the
expension zone and thét in shock waves is that the gas variables change
~smoothly i.e., the gradients of £as variables are not large in the expan-
sion zone, As the front shock converges to the origin the strength of
this shock tends to become singular, In'addition, the shock structure
~as well as a sm2ll segment of the expanéion zone behind the shock fronf
exhibit very large gradients and large disturbances! However, following
the aone described portion of the wave, we have the remainder of the
N~wave, which consists of the remaining portion of the expansion fegion
as well as the rear shock, where distﬁrbances are still small, T§ study
the flow field in the expansion zoné between the front and rear shocks,

we assume the relations

? 0 2 _
o 227 ~ 3z o (175)

with the understandiﬁg ihat these relations are violéted locally in the
front and rear shocks as they approach the origin. The amplitude of the
Ne-wave iz O( 4 ) initially. Hence, we expand the dependent variables
u o, P s, P , T and S in power series of ;S as shown in (142).
Upon substitution of these expansions into thg-Basic_equations (84) to
(87) and using the relations (175), we find that the first-order approxi-

mate equations can be reduced to
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_ X .
azu' N 'u, J ou, B 17 )
ot:r px? T x (% x? (176)
3”! 'f' '()(Ol = O
2T Dx
P = y‘p,
\gl = O :
| (177)

Therefbre, the governing equation of the flow field in the expansion zone
of the N-wave is, to a first-order approximétion, linear and inviscid
wave equation. It shbuld be remembered that this equation doesn't apply
to the flow field inside the shock waves, since the condition (j75) is
lécally violated inside.the shocks. 'Furthermore; Eq. (176) and Eq. (177)
are meaningful only if the conditions (173 a) énd.(174 a) are satisfied,
i.e., the energy loss due to entropy rise across the shock is very small
in comparison with the toial energy of the N-wave. We.will first solve
Eq.(176) for the cylindrical case.’ |

() J=1¢: ,

The boundary conditions for Eq. (176) are that the solution should
vanish at the axis of symmetry for all time and it should match the solﬁ—
tion of the converging region as x —— o , ;E‘——*-—1 . The outer bound-
ary condition is derivéd from Eq.(135). It is well known that in linear
and inviscid approximation the position of front and rear shocks relative
to the central point of the N-wave and shock'thickﬁess stay constant; only
the amplitude will vary because of focusing. Thus, Eq.{(135) is modified
by approximating the shock thiékness and shock positions by their values

at n = § , i.e., at the boundary of the interaction region. Se#ting'
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n = ) in the argument of the hyperbolic tangent functions in,Eq.(1352

changing the solution into the variables of interaction region (x, T),

and expanding the resulting expression for small § with ?t s X »{

fixed, we obtain the matching condition for Eq.{(176)

£r

’C+x-ll+2 £
7 £
12 ;?ﬁ§//+2%§

T+ X - L
I Janh ( 7

Ulx,t) o~
2{x (legﬁ)'

x —=®

el |
/ £0
- _ T+xX +{/*+2F

-fan/a(——i— g =
E.r—g’/g.{['f’Z’s"

(178)

The inner boundary condition is

ux,T) =0 at x =0 forall T . (179)

The procedures used to solve Eq.(177) with the boundary conditions

(178) and (179) are the same as those used for the linear cylindrical

case. Application of the Fourier transform to Eq. (177) and boundary con-

ditions (178) and (179) yields

2N s A
. 1 3
St R TTA =0
x} (180)
and the boundary conditions
w
. -is%
(4
b ——— e Pde s
X —» 00 2(}4‘2—3:‘)[;—- A
! (181)
at x =0 . (182)

&;(x,s): o
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where -
5+ Itz g 5 - /+2%p-
P = %k - tanh (
5o (45*%5,/#2% ) 4&’%&5{I+2% )
(183)
@ -tS§
&(S):j P(3) e Jxg
@ (184)

The general solution of Eq.(180) is

' (2)
65y = sy H sy + Caes) HP cxs)
(185)

The functions C1(s) and CZ(S) are determihed-from the boundary condi-
tions (181) and (182) as well as the properties of Hankel functions (102)

and (103). The results are

Y, . '
Cis) = |Ze — ! {5Qs -F<args < 2w
" j—; 2(+2%y
| (i86)

: = A

The solution in the physical plare (x,7 ) is obtained by using the
inverse Fourier transform to (185) in which 01(3) and Cz(s) are

given by (186) and (187)

d)/\ (ST
: e d
Uplx, Ty = ziﬁj\ 4, cx, T - és (188)
-

Asymptotic Behavior for Large x :
The asymptotic forms of Hankel function (103) are used in'_u1(x,s)
in (188), and evaluation of the resultant integral yields the asymptotic

solution for large x
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Uitx,T) s
X —= 0

R A [+x>['fanh( T+X+',+2 )

2(1+2%’-’{3€ fﬂ-ﬁ-—(’ /+2——‘

tank ( ’C*’;ﬁ‘l’/z;] (e [ranh (2128
& f_ 1+2 5

fan/)( Tox- ”LZ ] + O( :
‘ 45*”Br{/+2~ x‘@/#%@)

(189)

It is easily seen that 2s x —c0. , -;E —~ =1 , the last two terms are
exponentially szriail; the solution (189) matches the outer boundary condi-
tion (178). As x =~ , -—:— —— 41 the- first two terms are exponen-
tially small and the solution predicts a reflected N-wave which has the
same profile as the incoming N~-wave. The a:ccuracy of this predictions is
Justified in the cylindrical. case since thereril'ergy dissipation is
negligible in comparison with the total energy of the N-wave.

Limiting Solution for Small x

Using the limiting relationships of Hankel function (103) for

?.11()(,8) in (188), we have

o
ST
ucxry = A= | G8227,x3) e " ds
SRR 7 x>0
-0
37
x 72
c 4 &cs)e s+ O
e b P

-



T 3
o x _d | PO g5 4+ O(—"—
25(l+2§$’-’) dr? T- 3 +2%

~

| (190)
where P(%) is given by (183).
The pressure and dengity perturbations are calculated from (177)

and (190); the results are
T

: -1 dJ P(5) x* '
P(x,’t): — _————-—-—d’.‘ ")“O(""“‘—""‘
’x»o 20z (1+2%) dt Jz-35 °~ ,+z%c>
N
(191)
R(X’T) = yP’(x‘T)
e x=e (192)
where P(Y%) is given by (183).
N
—_

P

2{z (1+25)

S~

h‘“\/]+2%’1 ™

Fig. 7 Pressure perturbation near and at the axis (Fq.(192))
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The above limiting solutions give qualitative description of the distur-
bances at the focus. The amplitude evaluated at the instant when the
front or rear chock reaches the focus is muchAgreater than 1 . - However,
the flow field between the front and rear shock waves remains that of
small perturbation; i.e., the amplitude is of O0O(«£L) .

(b) § = 2 (spherical case)

The boundary conditiors for Eq. (176) are that the solution should
vanish at the center of symmetry for all time aﬁd it should match the
solution of the converging region as x —+ @ , 'El—*— -1 . The outer
boundary condition is derived from Eq.(136) by setting 7 = 5 in
tﬁe argument of the hyperbolic tangent functions and changing the solu-
tion into the variabies of interaction regioﬁ (x, T), and expanding the

resulting expression for small § with t', X £ fixed, we have

]

+x + 1~ ELlnS
U cx,T) ~ Ttx [1‘0/7 a 'E/‘J == )
2 - OO 48 8 "‘2,1/:15

>
2

- danh (Tt = ,/ /- "‘/n5>
L4 s - Lins ]

The inner boundary condition is

ul(x,‘t) -0 at x =0 forall T

Applying the Fourier. transform to Eq.(176) with j = 1 and the above

boundary conditions, we have



‘()2 3 2 aﬁ | 2 A
! [ 2 2 _

with the boundary conditions

' (sx ‘S
51()(.5‘) ~ N 154 \JM(;)@ 3
X —» 00 =X o -
R
=
, (sx
= —_— e N(S’)
X '
where
s-[1- Lhs

.=-_ tanh +,/l-——/;.5 | n |
M(3) g[a {4£xcgn5 /.ﬁlé) '/’a /)(48”%—(75{/-%&/n5)_

- M3 e—LSEJ’J
N(s)= ) >

-0

The solution in the transformed plane is

VA (2] 255
u,(x,S) = - -—“i———— G)(.S)[;% [Hs/z(xs) -+ /'/34 (xs)J

Performing the inverse Fourier transform, we obtain the soluticn in the

physical plane (x,T)

. © - .
PS ST

)
U (x, t) = —27 U ltx,z) e ds



The asymptotic behavior as x—> o and limiting behavior as x — 0 of
the inverse Fourier integral are given below.

Asymptotic Behavior for Large x

U (5T ) ~ [M('r+x)-M(’[-.z)]
% —» O 2 x a |

Limiting Solution for Small x :

+ 7 - g
— L oMT)
DT T artu
_ - 37 d
x,T) = Lop(lT)
b ar( %) e

Pexz) =8P, tx. T

X 0o x —>» O

v [0 v /1 s
N MIT) = T + h —-7(7!7/7 === )
.w ere ¢ | L[ an »(424%['_5 /_%;/”3) 42*—5—55-8];//— %E/né")

F(x.r)
A 2y
) o
6\&\
AN B |
YN o ] |

1 }._ I-%E[nﬁ -1 | "", O(E?Eﬁ’%)

Fig. 8 Pressure perturbation near and at the center




V. DIVERGING REGION

The outgoing diverging pulses.are briefly discussed in this Chapierﬁ
The study of the diverging pulse is very similar to that of the converg-
ing pulse except for some trivial change in the aﬁlysis. In Chapter IV,
we have obtained the solﬁtion of interaction region which predicts the
outgoing pulée. The asymptotic form of this solution as x ~*~V00 and
%% —+1 provides the initial pulse form for the diverging pulse. The
initial pulse-form derived from the ésymptotic solution of the interac-
tion region is prescribed a2t r = Ty 9 Ty = O(A) . We wish to find
the motion of the pulse at large r , i.e., r > T, - The basic equa-
tions are Egs.(1) to (5) from which the governing equation for the diverg-
ing pulse is to be derived.

To nondimensionalize the system of equations (1) to (5), we use the
dimensionléss variables given by (6) and define -the dimensionless inde-.

pendent'variables by

(193)
Heie Ro is same radius >> T,
If relations (193) and (6) are substituted in the basic eQuations
‘(1) to (5) and all the primes are dropped afterwards, the nondimensional
basic equations thus obtained are exactly the same as those given by (8)
té (12) . The only modification in the equations is the parameter Rﬁﬂ;
in which RO is replaced by Ro - T, . We introduce»the following

coordinate system to study the diverging pulse:

17
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- _ ttr
7 =T g = S (194)
where s = A A is assumed much less than 1
’ o Ro—)\ NRO. " .‘ n .o
The initial amplitude of the diverging pulse at 4 = 7 ='——Li-
e Ro"'ro

is- ¥nown to be small; hence we can expand the gas variables in terms
of powers of & as given by (17) . Substitution of relations (17) and
(194) into the system of nondimensional equations (8) to (12) yields a

v séquence of approximate equationsj the first-order and second~-order

equations can be reduced to a single equation for .

. 2 '
U , 5 U €p L 29 ]
St T s Y%y T ok 0% (195)

Eg. (195) is the govefning equation for the outgoing diverging pulses.
It is noted that the equation is identical to Eg.(21) except for the sign
difference in front of the term on the right-hand side of the equation.
Therefore, all the techniques used before may be applied here. In the
follo#ing analysis we omit the detailed calculations and present the final

results only.

Linear (Case
If the initial amplitude of the pulse characterized by & is much

less than & , the nbnlineaf term illu,gfi in Eq.(195) can be

Y 0%
neglected and Eg. (195) becomes
. Z. .
oW J 7h ! Ur '
@,7 t T T SRe ’552 ‘(196)



The initial condition of the equation is obtained from the asymptotic
solutions (107) & (126) by taking the limit x — o0 ,,i% ~—~ 41 and-
expressing them in the present variables ( Q » % ). The final form

is

(")-j ! 5 e t _
'Z% (/+ Sﬁe | 4 70
(197)

un,3) =

The solution of Eq.(196) with initial condition’ (197) is obtalned by the

same method as used for Kq. (23) The .solution is

2
- z
4 a7
. : 1t —~—
s ey ) 5 Tske T ske
u, 715)" 7.,'/2 1_,.._2_ +4[2'A20)
ke % Re

(198)
Solution (198) shows that the amplitude decays and pulse-length increases

as the pulse diverges ( 7 increases) .

Weak Nonlinear Case

If the initial amplitude of the diverging pulse is large such that
ET . 0(1) , the complete equation (195) must be used. We first con-
s%der the cylindrical cace.

(a) § = 1 (cylindrical case)
| Setting =-1 in Eq.(195) and changing the variable ¥ to %

we have



(199)

N N
where ¥ = 53 and & = “meH -

The initial condition for Eq.(199) is derived from (189) in which the

: (>
limiting process x —= c@ — —=~ +1 is taken. Writing the resultant

L 4

* : : »
form in 7 y 3 variables, we have the initial condition as follows

- ED g [132 5

yer -ch'i l/ 1+2—[’-

~tanh ( et i l+23£>] at . 77

4e’ £ﬂ§/ 1+2 5
(200)
Equation (199) with initial condition (200) can be solved by the
method of maitched asymptotic expansions. The procedure of solving this
problem is exactly the same as those used in Chapter III for thé weakx
nonlinear case, Thus, only the final results are‘given here.

(i) Outer Solution

- 5"

+ 0O(€®) *
V7 (27 - 2/7'+U,()+2—ﬁ) | 15°1< 3,
Uy, ;*; £7) = ‘
| o B E & gt

(201)

*
; = 5
vhere % = = \/;*,:7,’2['7-2/7724-2%(#2%@)
(ii) Boundary-Layer Solutions

The boundary-layer solution at /u7¢[2[~ 2[~-r s (r+2€Q);

80
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/& L Es

Uy, 35€) = fanh
‘- Zr/zf" 2f'*“(1f2—£)['+ ’ (4[‘/2[— 2{7, +u‘(lrzf"))] ,

+Ore®) (202)

§+J—J2r 2f—+ r(+2 3 )

where §

The boundary-layer solution at §* = +f;\/2[;/'_2[7;.,.%(,+2§£)' R
5 *

wend -l /E 3
un,3;e') = [ - fank tC \
7 g 77[2/7‘—2/7—“"\5%(“2%)[ (‘*r/?—/- 2F+ £ (112 5 }]

+O( %)
where % =v ' 3*‘/5/2[7;;[7‘"*2&{7(’%2%) : (203)
2
(iii) Uniformly Valid éomposite Solution
uen, 35 €)= M - [ tanh 5" g [+f7- 2f71+%o+zé"—9)
| 2@(2/7[_—2['701-;57[#23&) 4e FF? —2[—+ (/+zf/’)

— tanh [t ?%/25-2f72+ (rt22) \
4"#[7—/2/7'2’}0 c/+zf”)7

+O(E")

(204)

Solution (204) shows that the pulse-length and shock thickness increase
but the amplitude decreases as the pulse diverges. This solution is
ﬂbt valid for very large : /7 , since then the shock thickness becomes

comparable to the pulse-length as indicated by Seebass(27),




82

— Ot 5\‘.,_

__..rjzr Zr-f- (H-z .

2,\[;1—42{7-2@ A ei,,mz%a)' |

Fig. 9 Velocity profile of the diverging pulse (Eg.(204))

(b) § = 2 (spherical case)

Setting j = 2 in Eq.(195) and changing the variable 3§ to ¥~ |

we have

The initial condition is derived from the asymptotic solution for large
X and,-%%—>+1 of the interacfion region in last chapter; the final form

¥*
in 7 y % variables is
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u17,3%) = 5* Z5) [Tanfz( 2”*5‘%1%-’"5)
%)

270 (- 4e¥s /—-%—PI')S

G4E*S p—_ﬂmg

*72”‘( 3" /&I”/il” ~InS )] -

(206)

If_ should be noted that this initial Newave is different from those in |
the previdus cases, The N~wave consists of two expansion wavefronts and

" a compres=zion region between them. We will show that such N-wave will
distort to an "I" Wévé as it diverges. The method of matched asymptotic
expansions is‘ again used here.

(1) Outer Solution

We expand the dependent x.ra,riable u»1(7, 5*‘; & *) in power series

of £ and substitute the expansion into Eq.(205) and condition (206),

the first term in the expansion satisfies the equation

?Uo an

v + 2L =0
°ogr 27 7 (207)
with the initial condition at =1,

»

5
/A ‘gﬁ(l—%alré)
o )8%] > ES—,:,//— s

v,(n,5%) =

The solution is
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g = = n=1,
' n[in, - (&= rE)] " toon)

The solution gives the slope of the linear profile (compression wave)
between the two expansion wavefronts. It is interesting to note that the
slope increases as 7 increases. The factor in the denominator

[)n _’I'?; - (’€8F + fl:g‘)] | plays an irﬁportant role in determining pulse-~
form., ‘As the pulse diverges to the distance 7 = 705”¥’(é%-*‘j;%') ’
the slope becomes infinite and the shock wave developes at this distance.
We will study the propagation of the diverging pulse in the range

o= 7 < 7°€x,o(zs-—ﬂ +//,,—-£-) and in the range 7 =7, ex’p(z‘%#-/ﬁjg)
separately. : |
In the range 70 =7 < 70 elP(E%? "/i’_’j{) :

Integrating Eq.(207) and using the conditions Up 2% —» 0 as

4 ‘ag'
gt , we obtain the relation
O 3
7 %m 3m = %P5 (209)

It shouid bé noted that the amplitudes of the disturbances at the
front, the central, and the rear points of the pulse aré‘zero; these points'
propagate with constant speed Qo . Therefore, the relativé‘positions
among them should remain constant, i.e., gm* = constant, if no multiple
values of the gas variables occur.. The.31ope.of the linear profile and

the amplitude change as the pulse diverges. From (209)_we find

&

l/l;‘m \ 8
T 3m -
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Hence, in this range of %  the maximum amplitude of the diverging pulse

decays only due to the geometrical divergence. The pulse-form is

shown below: . A
' J
¢
Yom
8 b e
) ,.1.
‘E‘,T,""‘ /n5 _
In the range =7, : : S L
7 ° er’-"//—";

As the diverging pulse arrives at the distance 7 =7¢€
the slope of the linear profile becomes infinite (o= 90%) . 1If
" A> 7, € _g"*/ﬁ » the slope becomes negative and the gag vari-
ables b'ecome”mult_iple values, which are physicélly impossible; a

. *
shock wave must occur at 3 = 0 ., The pulse-form in this range we

will c2ll an "I" wave which is shown below:

l"fo
. Shock waove
l v\\g / l
R U- - \ é ’

3 T -3
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The presence of the shock wave causes energy dissipation, therefore,
it will accelerate the amplitude decay. The shock strength UB;, can

be czlculated as follows:

Vim 5t X

Von S5t lpesto]l 5|07 [l ~(EA{T)] |

As 7 becomes large, we have

/ S ————

~ !
m 7’"7

Thus, the maximum pulse amplitude (shock strength) decays more rapidly

Vo

" than an N-wave because of the initial pulse-form.
To study the shock structure we introduce the following coordinates
and expansions:
5‘?
£ ”

1

e
i

-~
i

wen,s¥; %) = U, 3Ty + €7 (7.37) 4

Substituting the above relations into Eq.(205), we find that Uz satis-
fies .
625 T 2g*

, -
Ub_**i Vorn as 3 — too

Wiy
i
O
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The solution is

[ o
Uy = 3[0"’, fa,,/,(M)
2"
. /
This is again a Taylor's shock structure, in which U, decreases as 7

increases 3 thus the shock thickness grows as the pulée diverges. How=-

ever, this solution is not valid for very large 7 when the shock thick-

ness is comparable to the wavelength.



VI. CONCLUSION

Thé focusing of spherical and cylindrical pulses in a viscous and
thermally conducting medium has been inveétigated. This problem is
governed by three paiameters E 4 & , and R;1 which characterize
the initial stfength and position of disturbances and nature of the
medium in which the pulée pﬁopagates. The fdndamental'assumption here is
that all three parameter are small, It is found that a simple and effi- |
cient w2y to study the focusing pulée problem is to divide the region of
interest into three regions, nameiy, the converging region, the interaé-
tion regioﬁ,.and the diverging region, |

We consider the cylindrical and spherical pulses_of infinitesmal-
amplifude in avviscous and heat-conducting medium_(—§f<ﬁ 1 ,: 6R2V= 0(1),
and lé << 1 ); the approximate equation for.the converging région is
linear and contains the viscoﬁs and.heat-conduction term, The solution
of this.equation shows that {he amplitudé.of the pulse decfeases‘initially‘
because the diffusion effects dominate, then increases fapidly due to the
strong fpcusing effect as r— 0 , Any initial discontinuity contained
in the pulse profile is diffused to a transition zone whose width becomes
same order ag the pulse-length as the pulse approaches the interaction
region, e.Z., an initial N-wave with jump discontinuities at front and
rear fronts becomes a very smooth profile as it approaches the interac-
tion., The interaction region is found to be governed to first order by
the linear waQe equation with radial symmetry. The solution of the linear

wave equation, which matches the solution of converging region and

88
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satisfies the boundary condition at axis or center of symmetry, shows
that the amplitude of the focusing pulse remains small in the whole
interaction region including the axis or center 6f symmetr&. The'A
velocity perturbation is found to be linearly proportional to the radial
distance from the origin and is 2ero at the origin; the pressure and den-
sity perturbaﬁions are independeﬁt of the radial distance iﬁ the vicinity
of the origin. The peculiar pheﬁomenon of 180-degree phase shift after
the reflection at the center of symmetry is found in the spherical case,
but no pﬁase shift occurs in the cylindrical case.

We also qonsider converging cylindrical and sphericgl pulses of
finite amplituae in 2 medium of very small viscosity and heat conductivity,
The approximate equation for the converging region is a nonlinear second-
order partial differential equation with a small parameter 8*'= EF%ZT;-.
The composite solution (first term of a composite series expansion in.
terms of & *) of the approximate-equatién'describes a §onverging pulse
with changing pulse-form, e.g., & sinusoidal vave with compressions (p>:O)
followed by rarefactions (p < 0) distorts to an N—wave.l The flow fields
inside the front and rear shocks are locally discribed by Taylér's shock
structure. The shock thickness diminishes as it convergeé in the converg-
ing region despite the presenée of viscosity and heat conduction. The
flow fielé inside the expansion zone between the front and rear éhocks of
the N-wave is found to be inviscid in the first-order approximation. As
the N-wave enters the interaction region, it is shown that no small-

perturbation solution for the shocks in the interaction region exists

under the conditions = = 0(1) , 8Re >> 1 . However, the flow field
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between the front and rear shocks satisfies to first order the linear
wave equation. This approximation is shown to be applicablé only if the
parameters & , é , Re satisfy certain relations ﬁhich insure thai
~the amount of the energy dissipated through the shock front of the N-wave
is negligible in comparison with the total energy of. the N-wave.

The governing eguation for the diverging pulse is shown to be iden-
_tical to that of converging pulse and can be treated by the same.method.
The solution for the diverging pulse shows the decay of amplitﬁde due to
geometrical, ﬁonlinear, and diffusion effects, It also shows the increase
of pulse-length due. to the ngnlinear distortion, Qiscous and heat-conduc~

tion effects.
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